Effects of grafted polymer chains on lamellar membranes

Tomomi Masui, Masayuki Imai, Kaori Nakaya, Takashi Taniguchi

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

We have investigated the effects of grafted polymer chains [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] on the bending modulus and the intermembrane interactions of lamellar membranes (C12 E5 water) by means of a neutron spin-echo and a small-angle x-ray scattering technique. In this study the hydrophilic chain takes the mushroom configuration on the membrane. The bending modulus of the polymer-grafted membranes increases in proportion to the square of the end to end distance of the polymer chain, which agrees well with the theoretical prediction of Hiergeist and Lipowsky [J. Phys. II 6, 1465 (1996)]. From the interlamellar interaction point of view, the mushroom layer is renormalized to the membrane thickness, which enhances the repulsive Helfrich interaction. When the size of the decorated polymer chain increases to the interlamellar distance, however, the mushroom is squeezed so as to optimize the interlamellar potential. Further increase of the grafted polymer size brings a lamellar-lamellar phase separation, where the grafted polymer chains are localized in the dilute lamellar phase and the concentrated lamellar phase forms the onionlike texture.

Original languageEnglish
JournalJournal of Chemical Physics
Volume124
Issue number7
DOIs
Publication statusPublished - 2006
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Effects of grafted polymer chains on lamellar membranes'. Together they form a unique fingerprint.

Cite this