Effects of dielectric-layer composition on growth of self-formed Ti-rich barrier layers in Cu(1 at % Ti)/low-k samples

Kazuyuki Kohama, Kazuhiro Ito, Susumu Tsukimoto, Kenichi Mori, Kazuyoshi Maekawa, Masanori Murakami

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)


    In our previous studies, Ti atoms in Cu(Ti) alloy films were found to segregate at the film surface and the interface between Cu(Ti) alloy films and dielectric layers after annealing in Ar atmosphere at elevated temperatures. Such self-formed Ti-rich interface layers can act as a diffusion barrier layer. This technique was called "self-formation of the diffusion barrier," which is attractive for the fabrication of ultra-large scale integrated interconnects. In the present study, we investigated the growth of Ti-rich barrier layers in Cu(Ti)/dielectric-layer samples with a low Ti content (1 at%) after annealing in ultra high vacuum (UHV). Ti atoms were found to segregate only to the Cu(Ti)/dielectric-layer interface under annealing in UHV. The microstructures were analyzed by transmission electron microscopy and Rutherford backscattering spectrometry, and correlated with the electrical properties of the Cu(Ti) films. It was concluded that Ti-rich interface layers were formed in all the Cu(Ti)/dielectric-layer samples. The Ti-rich interface layers were identified to consist of TiC or TiSi in addition to Ti oxides. The growth of the Ti-rich interface layers consisting of TiC was faster than those consisting of TiSi. Similarly, the resistivities of Cu(Ti)/dielectric-layer samples in which the TiC formation was observed were quickly reduced and those in which the TiSi formation was observed were gradually reduced. Compositions of the self-formed Ti-rich interface layers were concluded to be determined by the C concentration in the dielectric layers rather than by the enthalpy of formation. The growth of the self-formed Ti-rich interface layers consisting of TiC may be controlled by C diffusion in the Ti-rich interface layer. The composition of the dielectric layers was concluded to play an important role on the growth of the Ti-rich interface layers.

    Original languageEnglish
    Pages (from-to)1987-1993
    Number of pages7
    JournalMaterials Transactions
    Issue number9
    Publication statusPublished - 2008 Sep


    • Barrier layer
    • Cu(Ti) alloy film
    • Low-k films
    • TiC
    • TiSi

    ASJC Scopus subject areas

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering


    Dive into the research topics of 'Effects of dielectric-layer composition on growth of self-formed Ti-rich barrier layers in Cu(1 at % Ti)/low-k samples'. Together they form a unique fingerprint.

    Cite this