TY - JOUR
T1 - Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan
AU - Osada, Noriyuki
AU - Onoda, Yusuke
AU - Hikosaka, Kouki
N1 - Funding Information:
Acknowledgments We thank the landowner (Hakkoda-Onsen, Tashiro Bokuya-Chikusan Kumiai) for permission to use the site for this study, Aki Shigeno for her help in field measurements, Riichi Oguchi for his help in anatomical analysis, and Onno Muller, Satoki Sakai, and Naoko Tokuchi for their valuable comments. This study was supported in part by grants from the Japan Ministry of Education, Culture, Sports, Science and Technology (18770011 and 21780140), and the Global Environment Research Fund (F-052) from the Japan Ministry of the Environment, and by the Sumitomo Foundation (073130).
PY - 2010
Y1 - 2010
N2 - Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (Vcmax) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to Vcmax (Jmax/Vcmax) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.
AB - Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (Vcmax) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to Vcmax (Jmax/Vcmax) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.
KW - Leaf photosynthesis
KW - Light availability
KW - Natural CO springs
KW - Nitrogen partitioning
KW - Soil nitrogen availability
UR - http://www.scopus.com/inward/record.url?scp=77955768661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955768661&partnerID=8YFLogxK
U2 - 10.1007/s00442-010-1635-z
DO - 10.1007/s00442-010-1635-z
M3 - Article
C2 - 20440515
AN - SCOPUS:77955768661
VL - 164
SP - 41
EP - 52
JO - Oecologia
JF - Oecologia
SN - 0029-8519
IS - 1
ER -