Effect of three dimensional strain on the electronic properties of graphene nanoribbons

Meng Yang, Masato Ohnishi, Ken Suzuki, Hideo Miura

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Graphene has great potential for ultra-sensitive strain sensors applications due to its high mechanical strength and good compatibility with the traditional semiconductor process. In the current study, we investigated the effect of tensile and bending deformations on the electronic states of graphene nanoribbons (GNRs) using density functional theory (DFT) to clarify the underlying mechanism of the piezoresistive properties of graphene. It is found that the electronic structure of armchair graphene nanoribbons (AGNRs) is very sensitive to the tensile deformation. When a uniaxial tensile stress is applied to AGNRs with width Na = 10, the band structure is modified, leading to the change in band gap approximately from 0 eV to 1.0 eV. The band gap values of bent AGNRs decrease significantly when the maximum local dihedral angle exceeds a critical value due to the orbital hybridization. Based on these knowledge, we fabricated a strain sensor using the graphene film grown by thermal chemical vapor deposition (CVD) method on Cu foil. The strain sensor is fabricated directly on the graphene-coated Cu foils by using the standard photolithography process and reactive ion etching (RIE) and then transferred onto a stretchable and flexible polydimethysiloxane (PDMS) substrate. The one-dimensional tensile test and three-dimensional bending test are performed to investigate the piezoresistive properties. A gauge factor 3.4 was achieved under the tensile deformation. The fabricated strain sensor also exhibits good performance to detect bending deformation.

Original languageEnglish
Title of host publicationAdvanced Fabrication and Manufacturing; Emerging Technology Frontiers; Energy, Health and Water- Applications of Nano-, Micro- and Mini-Scale Devices; MEMS and NEMS; Technology Update Talks; Thermal Management Using Micro Channels, Jets, Sprays
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856901
DOIs
Publication statusPublished - 2015 Jan 1
EventASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels - San Francisco, United States
Duration: 2015 Jul 62015 Jul 9

Publication series

NameASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
Volume3

Other

OtherASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
CountryUnited States
CitySan Francisco
Period15/7/615/7/9

ASJC Scopus subject areas

  • Process Chemistry and Technology

Fingerprint Dive into the research topics of 'Effect of three dimensional strain on the electronic properties of graphene nanoribbons'. Together they form a unique fingerprint.

Cite this