Effect of physical property of water on SCC growth rate of 316L stainless steels in high-temperature water

Research output: Contribution to journalConference articlepeer-review

Abstract

A number of mechanisms have been proposed to understand stress corrosion cracking (SCC) of metals, e.g. (1) slip dissolution and active pass corrosion based on anodic dissolution of metals, (2) tarnish rupture and internal oxidation based on oxidation ahead the crack tip followed by cracking ofthe oxides, and (3) hydrogen cracking, etc. If dissolution of metals takes the essential role in the stress corrosion cracking concerned, cracking susceptibility is expected to be significantly affected by dielectric constant of water. Because dielectric constant represents a character of water as a solvent, which determines solubility of metal oxides, and therefore corrosion rate of metals is strongly dependent on dielectric constant of water. K-constant type SCC growth rate tests have been done as a function of physical property (dielectric constant) of water by either manipulating temperature under iso-pressure condition (15MPa) or manipulating pressure under iso-thermal condition (330°C). Intergranular cracking was more enhanced and the crack growth was significantly accelerated under the condition of higher dielectric constant, indicating that dissolution of metal plays important role in the cracking mechanism of 316L stainless steels under the present testing conditions.

Original languageEnglish
Pages (from-to)270-274
Number of pages5
JournalKey Engineering Materials
Volume353-358
Issue numberPART 1
DOIs
Publication statusPublished - 2007
EventAsian Pacific Conference for Fracture and Strength (APCFS'06) - Sanya, Hainan Island, China
Duration: 2006 Nov 222006 Nov 25

Keywords

  • Dielectric constant
  • Intergranular stress corrosion cracking
  • Stainless steels

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effect of physical property of water on SCC growth rate of 316L stainless steels in high-temperature water'. Together they form a unique fingerprint.

Cite this