Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys

A. Inoue, Z. Wang, D. V. Louzguine-Luzgin, Y. Han, F. L. Kong, E. Shalaan, F. Al-Marzouki

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Abstract We examined the formation, thermal stability, mechanical properties and corrosion behavior of a multicomponent Zr55Al10Fe6Co6Ni6Cu6Pd6Ag5 bulk glassy alloy, with the aim of clarifying the effect of high-order multiplication of the number of components on their properties. The bulk glassy alloy rods of 2 and 6 mm in diameter were formed by suction casting even at the low total content of typical glass-forming 3-d late transition metals like Co, Ni and Cu. The Vickers hardness is different in the center region and in the outer surface region. The difference seems to reflect the relaxation level of glassy structure. The Young's modulus and the compressive fracture strength are nearly the same for the base Zr55Al10Ni5Cu30 alloy in spite of the existence of immiscible atomic pairs. Moreover, the multicomponent alloy exhibits better corrosion resistance than that for the base alloy. The glassy phase changes to a supercooled liquid state at 720 K and then starts to crystallize at 754 K with a single exothermic peak, in contrast to the appearance of a wide supercooled liquid region for the base alloy. The primary crystalline phase precipitates with very short incubation time and very low growth rate, which are different from those for the base alloy. The extremely low growth rate of the crystallites is presumably due to the reduction of diffusivity of late transition metal elements resulting from multiplication. Thus, the high-order multiplication has the features of (1) the maintenance of high glass-forming ability even at the lower Co, Ni and Cu content and in the absence of wide supercooled liquid region, (2) the suppression of the decrease in mechanical strength even in the dissolution of immiscible elements, (3) better corrosion resistance, and (4) low growth rate of the primary precipitates.

Original languageEnglish
Article number33689
Pages (from-to)197-203
Number of pages7
JournalJournal of Alloys and Compounds
Volume638
DOIs
Publication statusPublished - 2015 Jul 25

Keywords

  • Mechanical properties
  • Metallic glasses
  • Multicomponent
  • Thermal stability

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys'. Together they form a unique fingerprint.

Cite this