Effect of fineness ratios of 0.75–2.0 on aerodynamic drag of freestream-aligned circular cylinders measured using a magnetic suspension and balance system

Taku Nonomura, Keiichiro Sato, Keita Fukata, Hayato Nagaike, Hiroyuki Okuizumi, Yasufumi Konishi, Keisuke Asai, Hideo Sawada

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The drag coefficients of freestream-aligned circular cylinders of fineness ratios of 0.75–2.0 were investigated with a magnetic suspension and balance system (MSBS). The objective was to find the critical geometry, that is, the fineness ratio at which the drag coefficient becomes the local maximum within this ratio range. The experiments were conducted using the 1-m MSBS at the low turbulence wind tunnel at the Institute of Fluid Science, Tohoku University. The drag and base pressure coefficients of various cylinders were measured. The freestream velocity was varied to produce flows with Reynolds numbers ranging from 0.6 × 10 5 to 1.0 × 10 5. The drag coefficient monotonically decreases as the fineness ratio increases and no critical geometry or local maximum of the drag coefficient is found in the range we investigated. The base pressure coefficient decreases as the fineness ratio increases. The temporal fluctuations of the base pressure of the models with fineness ratios of 0.75, 1.0, and 1.2 are approximately twice as large as that of the model with a ratio of 2.0. The relationship between the fineness ratio and the drag coefficient is similar to that between the fineness ratio and the base pressure coefficient, similar to the findings of previous studies of two-dimensional bodies.

Original languageEnglish
Article number77
JournalExperiments in Fluids
Volume59
Issue number5
DOIs
Publication statusPublished - 2018 May 1

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Physics and Astronomy(all)
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Effect of fineness ratios of 0.75–2.0 on aerodynamic drag of freestream-aligned circular cylinders measured using a magnetic suspension and balance system'. Together they form a unique fingerprint.

Cite this