Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells

R. Kurosawa, K. Morita, Makoto Koda, Y. Ishitani

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We performed a numerical simulation of the spatial behavior of spin precession in a persistent spin helix (PSH) state at high temperatures (>150 K) in a two-dimensional electron gas of GaAs and InGaAs (001)-semiconductor quantum wells (QWs). To describe the spin dynamics of the PSH state at high temperatures, the effect of a cubic Dresselhaus spin-orbit interaction (SOI) that destroys the PSH state was added to the balanced Rashba and linear Dresselhaus SOI. Furthermore, longitudinal optical and acoustic phonon scattering were taken into account in the momentum scattering calculations. The simulation results indicate that the PSH state in the InGaAs QW persists for over 500 ps because of the small effective mass of the electron, even at room temperature. We also reveal that it is closer to the ideal PSH state when the Rashba strength (α) is controlled to the renormalized linear Dresselhaus SOI strength (- β β) rather than the linear Dresselhaus SOI strength (- β).

Original languageEnglish
Article number182103
JournalApplied Physics Letters
Volume107
Issue number18
DOIs
Publication statusPublished - 2015 Nov 2

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Effect of cubic Dresselhaus spin-orbit interaction in a persistent spin helix state including phonon scattering in semiconductor quantum wells'. Together they form a unique fingerprint.

Cite this