Effect of composition and microstructure on hydrogen absorbing properties in binary TiMn2 based alloys

S. Semboshi, N. Masahashi, T. J. Konno, M. Sakurai, S. Hanada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have investigated the hydrogen absorbing properties of binary TiMn 2 based alloys with the compositions ranging from Ti-56.4 to 66.8 at% Mn, which were prepared by rapid solidification and subsequent annealing. All the alloys are composed of the TiMn2 and TiMn phases, where the volume fraction of the TiMn2 Laves phase increases with increasing Mn content. In the annealed alloys with Ti-56.4 to -59.4 at% Mn, the Mn content of the TiMn2 phase is about 60 at.%; whereas in the alloys with 59.4 to 66.8 at.%, it increases with increasing the Mn content of the alloys. Correspondingly, the hydrogen absorbing capacity of the alloys increases with increasing the Mn content up to 59.4 at.%, but rapidly decreases with a further increase of the Mn content These observations suggested that the alloy composition exhibiting the maximum hydrogen absorbing capacity is determined by a compromise of a high volume fraction and a low Mn content of the TiMn 2 phase.-In addition, we found that rapidly solidified alloys exhibited poor hydrogenation behavior. Therefore, it is concluded that the hydrogen absorbing capacity of the binary TiMn2 based alloys is mainly governed by the composition of alloy and possibility by the atomic arrangement of excess Ti atoms within the TiMn2 phase.

Original languageEnglish
Title of host publicationProcessing and Fabrication of Advanced Materials XII
EditorsT.S. Srivatsan, R.A. Varin
Pages453-464
Number of pages12
Publication statusPublished - 2003
EventProcessing and Fabrication of Advanced Materials XII - Pittsburgh, PA, United States
Duration: 2003 Oct 132003 Oct 15

Publication series

NameProcessing and Fabrication of Advanced Materials XII

Other

OtherProcessing and Fabrication of Advanced Materials XII
Country/TerritoryUnited States
CityPittsburgh, PA
Period03/10/1303/10/15

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Effect of composition and microstructure on hydrogen absorbing properties in binary TiMn2 based alloys'. Together they form a unique fingerprint.

Cite this