Effect of cohesion on shear banding in quasistatic granular materials

Abhinendra Singh, Vanessa Magnanimo, Kuniyasu Saitoh, Stefan Luding

Research output: Contribution to journalArticle

52 Citations (Scopus)

Abstract

Cohesive powders have widely different bulk behavior due to their peculiar interactions. We use discrete element simulations to investigate the effect of contact cohesion on the steady state flow of dense powders in a slowly sheared split-bottom Couette cell, which imposes a wide stable shear band. The intensity of cohesive forces can be quantified by the granular Bond number (Bo), namely the ratio between maximum attractive force and average force due to external compression. We find that the shear banding phenomenon is almost independent of cohesion for Bond numbers Bo<1, however for Bo≥1 cohesive forces start to play an important role, as both width and center position of the band increase. Inside the shear band, the mean normal contact force is independent of cohesion and depends only on the confining stress. In contrast, when the behavior is analyzed focusing on the eigendirections of the local strain rate tensor, a dependence on cohesion shows up. Forces carried by contacts along the compressive and tensile directions are symmetric about the mean force (larger and smaller respectively), while the force along the third, neutral direction follows the mean force. This anisotropy of the force network increases with cohesion, just like the heterogeneity in all (compressive, tensile and neutral) directions.

Original languageEnglish
Article number022202
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume90
Issue number2
DOIs
Publication statusPublished - 2014 Aug 6
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Effect of cohesion on shear banding in quasistatic granular materials'. Together they form a unique fingerprint.

  • Cite this