Effect of Al addition on phase constitution and heat treatment behavior in Ti-8 5mass%Mn-1mass%Fe-Al alloys

Masahiko Ikeda, Masato Ueda, Yoshinori Sumi, Mitsuo Niinomi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Titanium is considered to be a ubiquitous element since it has the 9th-highest Clarke number of all elements. Iron and manganese can also be used as beta stabilizers for Ti alloys, and can be considered to be ubiquitous because of their 4th- and 11th-highest Clarke numbers, respectively. However, investigations into the behavior of Ti-Mn-Fe alloys during heat treatment have shown that in some alloys, the isothermal omega phase is precipitated. Because this phase can lead to brittleness, it is very important to prevent it from forming. It is well known that aluminum can suppress the precipitation of the isothermal omega phase. Thus, in the present study, we investigated the effect of Al content on the phase constitution and heat-treatment behavior of Ti-8.5mass%Mn-1mass%Fe-0 to 4.5mass%Al alloys using electrical resistivity, Vickers hardness, and X-ray diffraction measurements. In all solution-treated and quenched alloys, only the beta phase was identified, thus confirming the suppression of omega-phase precipitation. The resistivity was found to increase monotonically with Al content, while the Vickers hardness decreased up to 3 mass% Al and then remained constant.

Original languageEnglish
Title of host publicationTHERMEC 2013
EditorsB. Mishra, Mihail. Ionescu, T. Chandra
PublisherTrans Tech Publications Ltd
Pages562-567
Number of pages6
ISBN (Print)9783038350736
DOIs
Publication statusPublished - 2014
Event8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013 - Las Vegas, NV, United States
Duration: 2013 Dec 22013 Dec 6

Publication series

NameMaterials Science Forum
Volume783-786
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013
CountryUnited States
CityLas Vegas, NV
Period13/12/213/12/6

Keywords

  • Aging
  • Alpha phase
  • Beta type
  • Isothermal omega
  • Low cost

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Effect of Al addition on phase constitution and heat treatment behavior in Ti-8 5mass%Mn-1mass%Fe-Al alloys'. Together they form a unique fingerprint.

Cite this