Dzyaloshinsky-Moriya interaction and long lifetime of the spin state in the Cu3 triangular spin cluster by inelastic neutron scattering measurements

K. Iida, Y. Qiu, T. J. Sato

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Inelastic neutron scattering (INS) experiments have been performed on the Cu3 triangular molecular nanomagnet using powder samples. In the medium resolution INS experiment, two peaks were observed at ω=0.5 and 0.6 meV, whereas an additional excitation peak was detected at very low energy ω=0.1 meV in the higher resolution experiment. A model Hamiltonian and its optimum interaction parameters were determined from the observed peak position, width, and intensity. A key ingredient of the model Hamiltonian is Dzyaloshinsky-Moriya interactions as suggested in the earlier reports, which is now directly evidenced by the observation of the 0.1-meV peak, corresponding indeed to a splitting of ground-state quartet into two doublets. Temperature dependences of integrated intensity of the 0.5- and 0.6-meV peaks are well reproduced by the Boltzmann distribution function up to 10 K, above which a small deviation was detected. Nevertheless, the inelastic peaks were visible even at very high temperatures as 50 K, indicating extraordinary weak coupling between spins and lattice vibrations (or any other perturbations) compared to the other known molecular nanomagnets.

Original languageEnglish
Article number094449
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number9
Publication statusPublished - 2011 Sep 28

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Dzyaloshinsky-Moriya interaction and long lifetime of the spin state in the Cu<sub>3</sub> triangular spin cluster by inelastic neutron scattering measurements'. Together they form a unique fingerprint.

Cite this