TY - JOUR
T1 - Dynamics of a vortex domain wall in a magnetic nanostrip
T2 - Application of the collective-coordinate approach
AU - Clarke, D. J.
AU - Tretiakov, O. A.
AU - Chern, G. W.
AU - Bazaliy, Ya B.
AU - Tchernyshyov, O.
PY - 2008/10/14
Y1 - 2008/10/14
N2 - The motion of a vortex domain wall in a ferromagnetic strip of submicron width under the influence of an external magnetic field exhibits three distinct dynamical regimes. In a viscous regime at low fields the wall moves rigidly with a velocity proportional to the field. Above a critical field the viscous motion breaks down, giving way to oscillations accompanied by a slow drift of the wall. At still higher fields the drift velocity starts rising with the field again but with a much lower mobility dv/dH than in the viscous regime. To describe the dynamics of the wall, we use the method of collective coordinates that focuses on soft modes of the system. By retaining two soft modes, parametrized by the coordinates of the vortex core, we obtain a simple description of the wall dynamics at low and intermediate applied fields that applies to both the viscous and oscillatory regimes below and above the breakdown. The calculated dynamics agrees well with micromagnetic simulations at low and intermediate values of the driving field. In higher fields, additional modes become soft and the two-mode approximation is no longer sufficient. We explain some of the significant features of vortex-domain-wall motion in high fields through the inclusion of additional modes associated with the half antivortices on the strip edge.
AB - The motion of a vortex domain wall in a ferromagnetic strip of submicron width under the influence of an external magnetic field exhibits three distinct dynamical regimes. In a viscous regime at low fields the wall moves rigidly with a velocity proportional to the field. Above a critical field the viscous motion breaks down, giving way to oscillations accompanied by a slow drift of the wall. At still higher fields the drift velocity starts rising with the field again but with a much lower mobility dv/dH than in the viscous regime. To describe the dynamics of the wall, we use the method of collective coordinates that focuses on soft modes of the system. By retaining two soft modes, parametrized by the coordinates of the vortex core, we obtain a simple description of the wall dynamics at low and intermediate applied fields that applies to both the viscous and oscillatory regimes below and above the breakdown. The calculated dynamics agrees well with micromagnetic simulations at low and intermediate values of the driving field. In higher fields, additional modes become soft and the two-mode approximation is no longer sufficient. We explain some of the significant features of vortex-domain-wall motion in high fields through the inclusion of additional modes associated with the half antivortices on the strip edge.
UR - http://www.scopus.com/inward/record.url?scp=55149103018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55149103018&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.78.134412
DO - 10.1103/PhysRevB.78.134412
M3 - Article
AN - SCOPUS:55149103018
VL - 78
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 0163-1829
IS - 13
M1 - 134412
ER -