Dynamical criteria for Cs ion insertion and adsorption at cap and stem of carbon nanotubes: Ab initio study and comparison with experiment

Mohammad Khazaei, Amir A. Farajian, Goo Hwan Jeong, Hiroshi Mizuseki, Takamichi Hirata, Rikizo Hatakeyama, Yoshiyuki Kawazoe

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Unlike lighter alkali metals, cesium is not inserted into carbon nanotubes straightforwardly. To clarify Cs+ insertion and adsorption processes in recent experiments, the Cs+ is shot toward the cap and stem of (5,5) and (10,10) armchair nanotubes by performing ab initio molecular dynamics simulations. Considering three relevant factors of collision, i.e., the impact position, impact angle, and the kinetic energy of dopant, we observe that the Cs+ with kinetic energy 50 eV is adsorbed on the surface of the nanotube irrespective of the impact angle and impact position. The Cs + with kinetic energy 100 eV can make a hole on the surface and be encapsulated, or trapped in the middle of the created hole, if the collision route is aiming toward the nanotube stem. If the route is aiming away from the nanotube stern, the Cs+ will tear the nanotube's surface and will be scattered off. This makes it possible for other Cs ions to get encapsulated via the torn region. The Cs ions whose energies are 150 eV and aim toward the nanotube stem get encapsulated with minimal deformation of the collision region. The simulation results are supported by Raman scattering spectroscopy experiments and are instructive in doped-nanotube applications such as flat panel displays and nanoelectronic devices.

Original languageEnglish
Pages (from-to)15529-15535
Number of pages7
JournalJournal of Physical Chemistry B
Volume108
Issue number40
DOIs
Publication statusPublished - 2004 Oct 7

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Dynamical criteria for Cs ion insertion and adsorption at cap and stem of carbon nanotubes: Ab initio study and comparison with experiment'. Together they form a unique fingerprint.

Cite this