TY - JOUR
T1 - Dynamic measurement of single protein's mechanical properties
AU - Mitsui, Keita
AU - Nakajima, Ken
AU - Arakawa, Hideo
AU - Hara, Masahiko
AU - Ikai, Atsushi
PY - 2000/5/27
Y1 - 2000/5/27
N2 - Dimerized (tandemly repeated) protein was constructed, and the stretching force during the unfolding of the single protein molecule was measured using an atomic force microscope. In quasistatic measurements using normal force-distance curve measurements, each monomer unit was unfolded step by step. To elucidate the conformational state at each extension length, we measured the relax-stress response of the protein using short stroke sinusoidal movements of the sample stage. This allowed us to investigate the dynamic response of the protein repeatedly without full stretching or rupturing. Although the protein molecule responded in-phase to the applied movement in most cases, we found a novel out-of-phase response around the stretching length where the second monomer unit unfolded. Applying the spring constant measured in the quasistatic experiment, the out-of-phase response was reproduced in the simple calculation, which suggested the folding and the unfolding at the second monomer unit were taking place repeatedly during the relax-stress response measurement. (C) 2000 Academic Press.
AB - Dimerized (tandemly repeated) protein was constructed, and the stretching force during the unfolding of the single protein molecule was measured using an atomic force microscope. In quasistatic measurements using normal force-distance curve measurements, each monomer unit was unfolded step by step. To elucidate the conformational state at each extension length, we measured the relax-stress response of the protein using short stroke sinusoidal movements of the sample stage. This allowed us to investigate the dynamic response of the protein repeatedly without full stretching or rupturing. Although the protein molecule responded in-phase to the applied movement in most cases, we found a novel out-of-phase response around the stretching length where the second monomer unit unfolded. Applying the spring constant measured in the quasistatic experiment, the out-of-phase response was reproduced in the simple calculation, which suggested the folding and the unfolding at the second monomer unit were taking place repeatedly during the relax-stress response measurement. (C) 2000 Academic Press.
UR - http://www.scopus.com/inward/record.url?scp=0034720473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034720473&partnerID=8YFLogxK
U2 - 10.1006/bbrc.2000.2742
DO - 10.1006/bbrc.2000.2742
M3 - Article
C2 - 10872803
AN - SCOPUS:0034720473
VL - 272
SP - 55
EP - 63
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
SN - 0006-291X
IS - 1
ER -