Dynamic behavior of splitting flames in a heated channel

A. Fan, S. S. Minaev, E. V. Sereshchenko, Y. Tsuboi, H. Oshibe, H. Nakamura, K. Maruta

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Flame-propagation dynamics with dual peaks in a heated microchannel is predicted by employing a thermal-diffusive model taking into account two reactants. After auto-ignition, the flame immediately splits into two reaction fronts with different luminosities. One front propagates upstream, whereas the other moves downstream, and finally they both extinguish. After some delay, the process is repeated, and reignition of the fuel-air mixture is induced by hot walls. It is also shown that the commonly used infinitely thin reaction zone model, which has no reactant concentration dependence, is not capable of capturing this phenomenon. The splitting flame dynamics with dual fronts is confirmed by photographs taken with a high-speed digital video camera in experimental investigations with a propane-air mixture. The experiments reveal interesting details, namely, coexistence of triple reaction peaks during the process of propagation of splitting flames is observed, and the flame splitting phenomenon occurs twice in one extinction-ignition period.

Original languageEnglish
Pages (from-to)245-250
Number of pages6
JournalCombustion, Explosion and Shock Waves
Volume45
Issue number3
DOIs
Publication statusPublished - 2009 May 1

Keywords

  • Microscale combustion
  • Repetitive extinction and ignition
  • Splitting flames

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Dynamic behavior of splitting flames in a heated channel'. Together they form a unique fingerprint.

Cite this