TY - JOUR
T1 - Dual oxidase 1 induced by Th2 cytokines promotes STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B in human epidermal keratinocytes
AU - Hirakawa, Satoshi
AU - Saito, Rumiko
AU - Ohara, Hiroshi
AU - Okuyama, Ryuhei
AU - Aiba, Setsuya
PY - 2011/4/15
Y1 - 2011/4/15
N2 - Although hydrogen peroxide (H2O2) is better known for its cytotoxic effects, in recent years it has been shown to play a crucial role in eukaryotic signal transduction. In respiratory tract epithelial cells, the dual oxidase (DUOX) proteins 1 and 2 has been identified as the cellular source of H2O2. However, the expression of DUOX1 or DUOX2 has not yet been examined in keratinocytes. In this study, using a DNA microarray, we demonstrated that, of the seven NOX/DUOX family members in normal human epidermal keratinocytes (NHEK), IL-4/IL-13 treatment augments the expression of only DUOX1 mRNA. We next confirmed the IL-4/IL-13 induction of DUOX1 in NHEK at the mRNA and protein level using quantitative real-time PCR and Western blotting, respectively. In addition, we demonstrated that this augmented DUOX1 expression was accompanied by increased H2O2 production, which was significantly suppressed both by diphenyleneiodonium, an inhibitor of NADPH oxidase, and by small interfering RNA against DUOX1. Finally, we demonstrated that the increased expression of DUOX1 in IL-4/IL-13-treated NHEK augments STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B. These results revealed a novel role of IL-4/IL-13-induced DUOX1 expression in making a positive feedback loop for IL-4/IL-13 signaling in keratinocytes.
AB - Although hydrogen peroxide (H2O2) is better known for its cytotoxic effects, in recent years it has been shown to play a crucial role in eukaryotic signal transduction. In respiratory tract epithelial cells, the dual oxidase (DUOX) proteins 1 and 2 has been identified as the cellular source of H2O2. However, the expression of DUOX1 or DUOX2 has not yet been examined in keratinocytes. In this study, using a DNA microarray, we demonstrated that, of the seven NOX/DUOX family members in normal human epidermal keratinocytes (NHEK), IL-4/IL-13 treatment augments the expression of only DUOX1 mRNA. We next confirmed the IL-4/IL-13 induction of DUOX1 in NHEK at the mRNA and protein level using quantitative real-time PCR and Western blotting, respectively. In addition, we demonstrated that this augmented DUOX1 expression was accompanied by increased H2O2 production, which was significantly suppressed both by diphenyleneiodonium, an inhibitor of NADPH oxidase, and by small interfering RNA against DUOX1. Finally, we demonstrated that the increased expression of DUOX1 in IL-4/IL-13-treated NHEK augments STAT6 phosphorylation via oxidative inactivation of protein tyrosine phosphatase 1B. These results revealed a novel role of IL-4/IL-13-induced DUOX1 expression in making a positive feedback loop for IL-4/IL-13 signaling in keratinocytes.
UR - http://www.scopus.com/inward/record.url?scp=79955036320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955036320&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1000791
DO - 10.4049/jimmunol.1000791
M3 - Article
C2 - 21411736
AN - SCOPUS:79955036320
VL - 186
SP - 4762
EP - 4770
JO - Journal of Immunology
JF - Journal of Immunology
SN - 0022-1767
IS - 8
ER -