Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination

Shinjiro Yamaguchi, Yuji Kamiya, Tai Ping Sun

    Research output: Contribution to journalArticlepeer-review

    130 Citations (Scopus)

    Abstract

    Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtK01, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.

    Original languageEnglish
    Pages (from-to)443-453
    Number of pages11
    JournalPlant Journal
    Volume28
    Issue number4
    DOIs
    Publication statusPublished - 2001

    Keywords

    • Arabidopsis thaliana
    • Biosynthesis
    • Cellular localization
    • Germination
    • Gibberellin
    • Phytochrome

    ASJC Scopus subject areas

    • Genetics
    • Plant Science
    • Cell Biology

    Fingerprint Dive into the research topics of 'Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination'. Together they form a unique fingerprint.

    Cite this