TY - JOUR
T1 - Disruption of Physiological Balance between Nitric Oxide and Endothelium-Dependent Hyperpolarization Impairs Cardiovascular Homeostasis in Mice
AU - Godo, Shigeo
AU - Sawada, Ayuko
AU - Saito, Hiroki
AU - Ikeda, Shohei
AU - Enkhjargal, Budbazar
AU - Suzuki, Kota
AU - Tanaka, Shuhei
AU - Shimokawa, Hiroaki
N1 - Publisher Copyright:
© 2015 American Heart Association, Inc.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Objective-Endothelium-derived nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) play important roles in modulating vascular tone in a distinct vessel size-dependent manner; NO plays a dominant role in conduit arteries and EDH in resistance vessels. We have recently demonstrated that endothelial NO synthase (eNOS) is functionally suppressed in resistance vessels through caveolin-1 (Cav-1)-dependent mechanism, switching its function from NO to EDH/hydrogen peroxide generation in mice. Here, we examined the possible importance of the physiological balance between NO and EDH in cardiovascular homeostasis. Approach and Results-We used 2 genotypes of mice in which eNOS activity is genetically upregulated; Cav-1-knockout (Cav-1-KO) and endothelium-specific eNOS transgenic (eNOS-Tg) mice. Isometric tension recordings and Langendorff experiments with isolated perfused hearts showed that NO-mediated relaxations were significantly enhanced, whereas EDH-mediated relaxations were markedly reduced in microcirculations. Importantly, impaired EDH-mediated relaxations of small mesenteric arteries from Cav-1-KO mice were completely rescued by crossing the mice with those with endothelium-specific overexpression of Cav-1. Furthermore, both genotypes showed altered cardiovascular phenotypes, including cardiac hypertrophy in Cav-1-KO mice and hypotension in eNOS-Tg mice. Finally, we examined cardiac responses to chronic pressure overload by transverse aortic constriction in vivo. When compared with wild-type mice, both Cav-1-KO and eNOS-Tg mice exhibited reduced survival after transverse aortic constriction associated with accelerated left ventricular systolic dysfunction, reduced coronary flow reserve, and enhanced myocardial hypoxia. Conclusions-These results indicate that excessive endothelium-derived NO with reduced EDH impairs cardiovascular homeostasis in mice in vivo.
AB - Objective-Endothelium-derived nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) play important roles in modulating vascular tone in a distinct vessel size-dependent manner; NO plays a dominant role in conduit arteries and EDH in resistance vessels. We have recently demonstrated that endothelial NO synthase (eNOS) is functionally suppressed in resistance vessels through caveolin-1 (Cav-1)-dependent mechanism, switching its function from NO to EDH/hydrogen peroxide generation in mice. Here, we examined the possible importance of the physiological balance between NO and EDH in cardiovascular homeostasis. Approach and Results-We used 2 genotypes of mice in which eNOS activity is genetically upregulated; Cav-1-knockout (Cav-1-KO) and endothelium-specific eNOS transgenic (eNOS-Tg) mice. Isometric tension recordings and Langendorff experiments with isolated perfused hearts showed that NO-mediated relaxations were significantly enhanced, whereas EDH-mediated relaxations were markedly reduced in microcirculations. Importantly, impaired EDH-mediated relaxations of small mesenteric arteries from Cav-1-KO mice were completely rescued by crossing the mice with those with endothelium-specific overexpression of Cav-1. Furthermore, both genotypes showed altered cardiovascular phenotypes, including cardiac hypertrophy in Cav-1-KO mice and hypotension in eNOS-Tg mice. Finally, we examined cardiac responses to chronic pressure overload by transverse aortic constriction in vivo. When compared with wild-type mice, both Cav-1-KO and eNOS-Tg mice exhibited reduced survival after transverse aortic constriction associated with accelerated left ventricular systolic dysfunction, reduced coronary flow reserve, and enhanced myocardial hypoxia. Conclusions-These results indicate that excessive endothelium-derived NO with reduced EDH impairs cardiovascular homeostasis in mice in vivo.
KW - caveolin-1
KW - endothelium
KW - endothelium-dependent hyperpolarization factor
KW - nitric oxide
UR - http://www.scopus.com/inward/record.url?scp=84952637950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952637950&partnerID=8YFLogxK
U2 - 10.1161/ATVBAHA.115.306499
DO - 10.1161/ATVBAHA.115.306499
M3 - Article
C2 - 26543099
AN - SCOPUS:84952637950
SN - 1079-5642
VL - 36
SP - 97
EP - 107
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 1
ER -