Direct numerical simulation of global instability in a hole-tone feedback system

Kazuo Matsuura, Masami Nakano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Direct computations and experiments of a hole-tone feedback system are conducted. The mean velocities of an airjet are 8 and 10 m/s in the computations, 6-13 m/s in the experiments. The diameters of a nozzle and an end plate hole are both 50 mm, and an impingement length between the nozzle and the end plate is 50 mm. The computational results agree well with the experimental data in terms of qualitative vortical structures and a relationship between the most dominant holetone frequency and a jet speed. Based on the computational results of the air-jet speed of 8 m/s, a Proper Orthogonal Decomposition (POD) analysis of the whole pressure fluctuation field is conducted. The 1 st and 2nd POD modes are nearly in anti-phase, and alternatively appearing helical structures are observed upstream of the end plate hole in an isosurface plot of the eigenfunctions of the modes. Dominant behaviors of vortex shedding from the end plate hole are represented by the 3rd and 4th modes. As the result, dominant variation of the pressure fluctuation field is successfully extracted by the present POD analysis.

Original languageEnglish
Title of host publicationASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
Pages2249-2254
Number of pages6
EditionPARTS A, B, C, D
DOIs
Publication statusPublished - 2011 Dec 1
EventASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011 - Hamamatsu, Japan
Duration: 2011 Jul 242011 Jul 29

Publication series

NameASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
NumberPARTS A, B, C, D
Volume1

Other

OtherASME-JSME-KSME 2011 Joint Fluids Engineering Conference, AJK 2011
CountryJapan
CityHamamatsu
Period11/7/2411/7/29

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Direct numerical simulation of global instability in a hole-tone feedback system'. Together they form a unique fingerprint.

Cite this