Direct measurements of the Poynting flux associated with convection electric fields in the magnetosphere

Y. Nishimura, T. Kikuchi, A. Shinbori, J. Wygant, Y. Tsuji, T. Hori, T. Ono, S. Fujita, T. Tanaka

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Observations of Poynting fluxes associated with onset of convection electric fields are essential for understanding of electromagnetic energy transport from the solar wind toward the magnetosphere leading to changes in the convection electric field, which is one of the most fundamental parameters in the magnetosphere-ionosphere coupled system. We present Cluster multispacecraft observations of Poynting fluxes associated with abrupt changes in large-scale electric fields during sudden commencements and southward turning of the interplanetary magnetic field (IMF). The Cluster spacecraft detected Poynting fluxes dominated by the field-aligned upward component during the preliminary impulse of sudden commencements and in the initial period after southward turning of the IMF. The upward Poynting flux indicates existence of Alfvn waves transporting electromagnetic energy from the ionosphere toward the magnetosphere leading to magnetospheric convection changes. The waveguide model and global magnetohydrodynamic (MHD) simulation calculating evolution of the Poynting flux following solar wind pressure enhancements also show upward Poynting fluxes propagating from the ionosphere toward the magnetosphere faster than the propagation of compressional waves. We conclude that the ionosphere acts as a channel to transmit electromagnetic energy supplied as field-aligned currents toward a wide region in the magnetosphere-ionosphere system instantaneously, leading to changes in magnetospheric convection electric fields.

Original languageEnglish
Article numberA12212
JournalJournal of Geophysical Research: Space Physics
Volume115
Issue number12
DOIs
Publication statusPublished - 2010

ASJC Scopus subject areas

  • Space and Planetary Science
  • Geophysics

Fingerprint Dive into the research topics of 'Direct measurements of the Poynting flux associated with convection electric fields in the magnetosphere'. Together they form a unique fingerprint.

Cite this