Diameter dependence of thermoelectric power of semiconducting carbon nanotubes

Nguyen T. Hung, Ahmad R.T. Nugraha, Eddwi H. Hasdeo, Mildred S. Dresselhaus, Riichiro Saito

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

We calculate the thermoelectric power (or thermopower) of many semiconducting single wall carbon nanotubes (s-SWNTs) within a diameter range 0.5-1.5nm by using the Boltzmann transport formalism combined with an extended tight-binding model. We find that the thermopower of s-SWNTs increases as the tube diameter decreases. For some s-SWNTs with diameters less than 0.6nm, the thermopower can reach a value larger than 2000μV/K at room temperature, which is about 6 to 10 times larger than that found in commonly used thermoelectric materials. The large thermopower values may be attributed to the one dimensionality of the nanotubes and to the presence of large band gaps of the small-diameter s-SWNTs. We derive an analytical formula to reproduce the numerical calculation of the thermopower and we find that the thermopower of a given s-SWNT is directly related with its band gap. The formula also explains the shape of the thermopower as a function of tube diameter, which looks similar to the shape of the so-called Kataura plot of the band gap dependence on tube diameter.

Original languageEnglish
Article number165426
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume92
Issue number16
DOIs
Publication statusPublished - 2015 Oct 21

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Diameter dependence of thermoelectric power of semiconducting carbon nanotubes'. Together they form a unique fingerprint.

  • Cite this