Abstract
The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe3O4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe3O4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.
Original language | English |
---|---|
Pages (from-to) | 1840-1844 |
Number of pages | 5 |
Journal | Physica C: Superconductivity and its applications |
Volume | 469 |
Issue number | 15-20 |
DOIs | |
Publication status | Published - 2009 Oct 15 |
Externally published | Yes |
Keywords
- Liposome
- Magnetic separation
- Nanosized ferromagnetic particle
- Superconducting magnet
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering