Development of high modulus/high strength carbon fiber reinforced nanoparticle filled polyimide based multiscale hybrid composites

Kimiyoshi Naito, Jenn Ming Yang, Yutaka Kagawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

The polyacrylonitrile (PAN)-based and pitch-based carbon fiber-reinforced nanoparticle filled polyimide based multiscale hybrid composites have been fabricated using vacuum assisted resin transfer molding (VaRTM) and autoclave curing. The carbon fibers used in this study were high tensile strength PAN-based (T1000GB) and high modulus pitch-based (K13D) carbon fibers. Fiber orientations of the T1000GB/K13D hybrid composites were set to [0 (T1000GB)/0(K13D)]2S (T1000GB and K13D unidirectional layers were alternately and symmetrically laminated). The fiber volume fraction was 50 vol% (T1000GB: 24.9 vol%, K13D: 25.1 vol%). Polyimide used in this study was a commercially available polyimide precursor solution (Skybond 703). Four different types of nanoparticle (25nm-C, 20-30nm-β-SiC, 130nm-β-SiC and 80nm-SiO2) and particle volume fraction was 5.0 vol% used for the inclusion. The tensile properties and fracture behavior of T1000GB/K13D nanoparticle filled and unfilled hybrid composites have been investigated. For 25nm-C, 20-30nm-β-SiC and 80nm-SiO2 nanoparticle filled and unfilled hybrid composites, the tensile stress-strain curves show a complicated shape. By the high modulus pitch-based carbon fiber, the hybrid composites show the high modulus in the initial stage of loading. Subsequently, when the high modulus carbon fiber begin to fail, the high strength fiber would hold the load (strength) and the material continues to endure high load without instantaneous failure.

Original languageEnglish
Title of host publicationPRICM7
PublisherTrans Tech Publications Ltd
Pages2620-2623
Number of pages4
ISBN (Print)0878492550, 9780878492558
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event7th Pacific Rim International Conference on Advanced Materials and Processing, PRICM-7 - Cairns, QLD, Australia
Duration: 2010 Aug 22010 Aug 6

Publication series

NameMaterials Science Forum
Volume654-656
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other7th Pacific Rim International Conference on Advanced Materials and Processing, PRICM-7
Country/TerritoryAustralia
CityCairns, QLD
Period10/8/210/8/6

Keywords

  • Carbon fiber reinforced polyimide based composites
  • Hybrid
  • Multiscale
  • Nanoparticle

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Development of high modulus/high strength carbon fiber reinforced nanoparticle filled polyimide based multiscale hybrid composites'. Together they form a unique fingerprint.

Cite this