Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models

Masayoshi Kawai, Hiroaki Kurishita, Hiroyuki Kokawa, Seiichi Watanabe, Norihito Sakaguchi, Kenji Kikuchi, Shigeru Saito, Toshimasa Yoshiie, Hiroshi Iwase, Takahiro Ito, Satoshi Hashimoto, Yoshihisa Kaneko, Masatoshi Futakawa, Shiori Ishino

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead-bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.

Original languageEnglish
Pages (from-to)16-25
Number of pages10
JournalJournal of Nuclear Materials
Volume431
Issue number1-3
DOIs
Publication statusPublished - 2012 Dec 1

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Materials Science(all)
  • Nuclear Energy and Engineering

Fingerprint Dive into the research topics of 'Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models'. Together they form a unique fingerprint.

  • Cite this

    Kawai, M., Kurishita, H., Kokawa, H., Watanabe, S., Sakaguchi, N., Kikuchi, K., Saito, S., Yoshiie, T., Iwase, H., Ito, T., Hashimoto, S., Kaneko, Y., Futakawa, M., & Ishino, S. (2012). Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models. Journal of Nuclear Materials, 431(1-3), 16-25. https://doi.org/10.1016/j.jnucmat.2011.11.023