Development of a dual-sided readout DOI-PET module using large-area monolithic mppc-arrays

Aya Kishimoto, Jun Kataoka, Takuya Kato, Takamasa Miura, Takeshi Nakamori, Kei Kamada, Shigeyuki Nakamura, Kenichi Sato, Yoshitaka Ishikawa, Kazuhisa Yamamura, Nobuyuki Kawabata, Seiichi Yamamoto

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

We are proposing a novel design for a module with depth of interaction (DOI) capability for gamma rays by measuring the pulse-height ratio of double-sided Multi-Pixel Photon Counters (MPPCs) coupled at both ends of a scintillation crystal block. Thanks to newly developed monolithic MPPC arrays consisting of 4 × 4 channels with a three-side buttable package, the module is very thin and compact, thereby enabling less dead space between each module when arranged into a fully designed gantry. To demonstrate our concept of a DOI measuring technique, we first made a 1-D crystal array consisting of five Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) cubic crystals measuring 3× 3× 3\mm3 in size, separated by a layer of air approximately 10 μ m-thick. When the light signals output from both ends are read with the 3× 3 mm2 MPPCs, the position of each crystal is clearly distinguished. The same measurements were also made using Ce-doped (Lu,Y)2(SiO4)O(Ce:LYSO), achieving a similarly good separation. We then fabricated thin Ce:GAGG 2-D crystal arrays consisting of two types: [A] 4 × 4 matrix of 3× 3× 3mm} 3 pixels, and [B] 10 × 10 matrix of 0.8× 0.8× 5 mm3 pixels, with each pixel divided by a BaSO4 reflector 0.2 mm-thick. Then four arrays are laid on top of each other facing the DOI direction through a layer of air 10 μm-thick. We demonstrated that the 3-D position of each Ce:GAGG pixel is clearly distinguished in both the 2-D and DOI directions for type A and B when illuminated by 662 keV gamma rays. Average energy resolutions of 9.8 ± 0.8% and 11.8 ± 1.3% were obtained for types A and B, respectively. These results suggest that our proposed method is simple and offers promise in achieving both excellent spatial and energy resolutions for future medical imaging, particularly in positron emission tomography (PET).

Original languageEnglish
Article number6423841
Pages (from-to)38-43
Number of pages6
JournalIEEE Transactions on Nuclear Science
Volume60
Issue number1
DOIs
Publication statusPublished - 2013 Feb 18
Externally publishedYes

Keywords

  • Depth of Interaction (DOI)
  • Multi-Pixel Photon Counter (MPPC)
  • Positron Emission Tomography (PET)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Development of a dual-sided readout DOI-PET module using large-area monolithic mppc-arrays'. Together they form a unique fingerprint.

  • Cite this

    Kishimoto, A., Kataoka, J., Kato, T., Miura, T., Nakamori, T., Kamada, K., Nakamura, S., Sato, K., Ishikawa, Y., Yamamura, K., Kawabata, N., & Yamamoto, S. (2013). Development of a dual-sided readout DOI-PET module using large-area monolithic mppc-arrays. IEEE Transactions on Nuclear Science, 60(1), 38-43. [6423841]. https://doi.org/10.1109/TNS.2012.2233215