Detection of human rhinovirus C viral genome in blood among children with severe respiratory infections in the Philippines

Naoko Fuji, Akira Suzuki, Socorro Lupisan, Lydia Sombrero, Hazel Galang, Taro Kamigaki, Raita Tamaki, Mariko Saito, Rapunzel Aniceto, Remigio Olveda, Hitoshi Oshitani

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

Human rhinovirus (HRV) C was recently identified as the third species of HRV using a molecular technique. Infections caused by previously identified HRVs (A and B) are thought to be limited to the respiratory tract; however, pathogenesis of HRVC is still largely unknown. A total of 816 nasopharyngeal swabs from hospitalized children with severe respiratory infections in the Philippines (May 2008-May 2009) were tested for HRV by reverse transcription polymerase chain reaction (RT-PCR), and 243 samples (29.8%) were positive for HRV. Among these patients, serum samples were also tested to determine whether specific HRV species were associated with viremia. Only 30 serum samples (12.3%) were positive for HRV. However, the HRV positive rates were different among HRV species, 3% (4/135) for HRVA, 0% (0/25) for HRVB, and 31% (26/83) for HRVC, and were the highest on 2 days after the onset of symptoms. These results suggest that HRVC may have a different pathogenicity and can more commonly cause viremia than HRVA and HRVB. Serum positive rates for HRV are affected by age, i.e., higher positive rates for those aged 1 year or more. HRVC that were detected from serum exhibited the same level of sequence diversity as those positive only for nasopharyngeal samples in phylogenetic analysis. However, all HRVA which were detected from serum were clustered in a monophyletic clade based on their 5′ non-coding region (NCR) sequences, which is closely related with a certain HRVC genotype (A2) in 5′-NCR. This finding suggests that the 5′NCR region may be associated with viremia.

Original languageEnglish
Article numbere27247
JournalPloS one
Volume6
Issue number11
DOIs
Publication statusPublished - 2011 Nov 8

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Detection of human rhinovirus C viral genome in blood among children with severe respiratory infections in the Philippines'. Together they form a unique fingerprint.

Cite this