Detection and avoiding ventricular suction of ventricular assist devices

A. Tanaka, M. Yoshizawa, P. Olegario, D. Ogawa, K. Abe, T. Motomura, S. Igo, Y. Nosé

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

Continuous flow blood pumps, such as axial flow and centrifugal pumps, have been gaining interest as circulatory devices for total artificial hearts (TAHs) and a biventricular assist device (BVAD) because of their smaller size and simpler structure compared to pulsatile pumps. However, continuous flow pumps are more prone to suction of the left ventricle than pulsatile pumps are. Sudden increases in flow rate to meet changes in physiological demand, especially in the left pump, often cause ventricle suction. In this study, a control algorithm to prevent suction from occurring in the left ventricle by controlling the rotational speed of the right pump, instead of reducing the cardiac output of the left pump, was developed and investigated. The method was tested in acute animal experiments with calves. The results indicate that this proposed method is capable of preventing suction and could simultaneously maintain circulatory control. A key advantage of this control system is that flow rates can be maximized while avoiding ventricle suction conditions particularly when the circulatory system is unstable such as in a the first few days after operation.

Original languageEnglish
Title of host publicationProceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages402-405
Number of pages4
ISBN (Print)0780387406, 9780780387409
DOIs
Publication statusPublished - 2005
Event2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005 - Shanghai, China
Duration: 2005 Sep 12005 Sep 4

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume7 VOLS
ISSN (Print)0589-1019

Other

Other2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS 2005
Country/TerritoryChina
CityShanghai
Period05/9/105/9/4

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Detection and avoiding ventricular suction of ventricular assist devices'. Together they form a unique fingerprint.

Cite this