Depth-specific optogenetic control in vivo with a scalable, high-density μlED neural probe

Robert Scharf, Tomomi Tsunematsu, Niall McAlinden, Martin D. Dawson, Shuzo Sakata, Keith Mathieson

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

Controlling neural circuits is a powerful approach to uncover a causal link between neural activity and behaviour. Optogenetics has been widely adopted by the neuroscience community as it offers cell-type-specific perturbation with millisecond precision. However, these studies require light delivery in complex patterns with cellular-scale resolution, while covering a large volume of tissue at depth in vivo. Here we describe a novel high-density silicon-based microscale light-emitting diode (μLED) array, consisting of up to ninety-six 25 μm-diameter μLEDs emitting at a wavelength of 450 nm with a peak irradiance of 400 mW/mm2. A width of 100 μm, tapering to a 1 μm point, and a 40 μm thickness help minimise tissue damage during insertion. Thermal properties permit a set of optogenetic operating regimes, with ∼0.5 °C average temperature increase. We demonstrate depth-dependent activation of mouse neocortical neurons in vivo, offering an inexpensive novel tool for the precise manipulation of neural activity.

Original languageEnglish
Article number28381
JournalScientific reports
Volume6
DOIs
Publication statusPublished - 2016 Jun 23
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Depth-specific optogenetic control in vivo with a scalable, high-density μlED neural probe'. Together they form a unique fingerprint.

Cite this