Defect chemical studies on oxygen release from the Li-rich cathode material Li 1.2 Mn 0.6 Ni 0.2 O 2-δ

Takashi Nakamura, Hongze Gao, Kento Ohta, Yuta Kimura, Yusuke Tamenori, Kiyofumi Nitta, Toshiaki Ina, Masatsugu Oishi, Koji Amezawa

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)


Oxygen release from oxide-based cathode materials is a key phenomenon for the realization of high performance and highly reliable next-generation batteries, because it can be a trigger for a thermal runaway and closely related to electrochemical performances. In this study, the mechanism of oxygen release from Li 1.2 Mn 0.6 Ni 0.2 O 2-δ and the corresponding electronic and crystal structural changes were studied. Li 1.2 Mn 0.6 Ni 0.2 O 2-δ showed oxygen deficient nonstoichiometry until δ ≈ 0.042, and further oxygen extraction resulted in the reductive decomposition to MnNi 6 O 8 and Li-Mn enriched Li(Li,Mn,Ni)O 2-δ′ . The oxygen vacancy formation mechanism was investigated by the defect chemical and thermodynamic analyses, and the oxygen vacancy formation energy was calculated from the nonstoichiometric data (ca. 2.03 eV). It was clearly confirmed that the lattice parameters and the distances of Mn-O and Ni-O were increased by the oxygen vacancy formation, which is known as the reduction expansion in nonstoichiometric compounds. Cooperative reduction of Ni, Mn and O due to the oxygen vacancy formation was observed from Ni-L, Mn-L and O-K edge X-ray absorption spectra. The charge compensation of the oxygen vacancy formation was maintained mainly by the reduction of Ni 3+ to Ni 2+ and mildly by the reduction of Mn 4+ and O 2- .

Original languageEnglish
Pages (from-to)5009-5019
Number of pages11
JournalJournal of Materials Chemistry A
Issue number9
Publication statusPublished - 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)


Dive into the research topics of 'Defect chemical studies on oxygen release from the Li-rich cathode material Li 1.2 Mn 0.6 Ni 0.2 O 2-δ'. Together they form a unique fingerprint.

Cite this