Abstract
Let H:=−Δ+V be a critical Schrödinger operator on L2(R N), where N≥3 and V is a radially symmetric function decaying quadratically at the space infinity. We study the optimal decay rate of the operator norm of the Schrödinger heat semigroup e−tH from L2(RN) to Lq(RN) (2≤q≤∞).
Original language | English |
---|---|
Pages (from-to) | 165-178 |
Number of pages | 14 |
Journal | Springer INdAM Series |
Volume | 2 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Critical Schrödinger operator
- L−L estimate
- Schrödinger heat semigroup
ASJC Scopus subject areas
- Mathematics(all)