Cyclic-tension fatigue behavior in a rolled AZ31B magnesium alloy studied using ultrasonic shear waves

Hideki Yamagishi, Mikio Fukuhara, Hiroaki Matsumoto, Akihiko Chiba

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Nondestructive evaluation of cyclic-tension fatigue in a rolled magnesium alloy,Mg-3Al-1Zn, was performed using vertically polarized shear wave (SV) reflection and shear horizontal wave (SH) transmission methods. Internal friction measured by SV reflection increased rapidly in the early stages of the fatigue and finally saturated, showing dominating interactions of movable dislocations and twinning boundaries with the waves as acoustic nonlinearities. The propagation time and logarithmic damping ratio in the SH transmission method followed a repeated increase and subsequent sudden decrease pattern, and finally converged toward fatigue failure due to acoustoelasticity, which represents the interaction with residual stresses. The wave and phase data were determined using an optical microscope, a scanning electron microscope, a surface roughness tester, and X-ray diffraction. The results demonstrated that during the fatigue process, residual stress accumulated on the compressive side of the specimen, despite the applied cyclic-tension loading. Brittle cracks that originated in inclusions provided sudden relief from the residual stress.

Original languageEnglish
Pages (from-to)2151-2161
Number of pages11
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume41
Issue number8
DOIs
Publication statusPublished - 2010 Aug 1

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Cyclic-tension fatigue behavior in a rolled AZ31B magnesium alloy studied using ultrasonic shear waves'. Together they form a unique fingerprint.

  • Cite this