Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance

Ozkan Gokcekaya, Naohiro Hayashi, Takuya Ishimoto, Kyosuke Ueda, Takayuki Narushima, Takayoshi Nakano

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

This is the first comprehensive study on the development of a cubic crystallographic texture in pure chromium (Cr) manufactured using laser powder bed fusion (LPBF) with different laser energy densities to alter its microstructure and high-temperature oxidation behavior. An increase in the laser energy density led to the formation of a strong crystallographic texture, which was preferentially oriented in the (100) plane, and there were microstructural improvements in the pure Cr. The grain size of the (100)-oriented Cr was larger than that of the randomly oriented Cr. In addition, the high-angle grain boundary and coincident site lattice (CSL) boundary characteristics were altered. The (100)-oriented Cr exhibited a decrease in the oxide thickness that was due to the decrease in the grain boundary density with a larger grain size and an increase in the CSL boundary ratio. In contrast, the Cr with a random texture showed higher oxidation kinetics and spallation of the oxide layer. The oxidation kinetics of the pure Cr manufactured using LPBF obeyed the parabolic rate law. However, the crystal orientation affected the oxidation of the Cr as the (100)-oriented pure Cr displayed a lower parabolic rate constant, indicating that the (100)-oriented Cr was oxidation-resistant. This is the first report to demonstrate the cubic crystallographic texture formation and the improvement of high-temperature oxidation resistance in Cr manufactured using LPBF.

Original languageEnglish
Article number101624
JournalAdditive Manufacturing
Volume36
DOIs
Publication statusPublished - 2020 Dec

Keywords

  • Chromium
  • Crystallographic texture
  • Grain boundary
  • High-temperature oxidation
  • Laser powder bed fusion
  • Microstructure

ASJC Scopus subject areas

  • Biomedical Engineering
  • Materials Science(all)
  • Engineering (miscellaneous)
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance'. Together they form a unique fingerprint.

Cite this