TY - JOUR
T1 - Crucial role of intralobe peptide-peptide interactions in the uptake and release of iron by ovotransferrin
AU - Kurokawa, Hirofumi
AU - Mikami, Bunzo
AU - Hirose, Masaaki
N1 - Copyright:
Copyright 2005 Elsevier B.V., All rights reserved.
PY - 1994/3/4
Y1 - 1994/3/4
N2 - The mechanism for reversible iron binding in the N-terminal lobe of ovotransferrin was investigated by a protein fragmentation approach. The iron-saturated N-terminal half-molecule of ovotransferrin was proteolyzed into large 30-kDa (1-279) and small 6-kDa (280-332) fragments by a single cleavage with Achromobacter protease I, producing a stable nicked form. For the separation of the two fragments, denaturing conditions were required. The isolated large fragment contained all four iron-coordinating ligands and the anion-binding ligand, and according to spectroscopic titration analysis, it showed iron binding capacity. The iron-bound large fragment, however, showed a blue-shifted visible absorption spectrum and a much decreased iron stability compared with those of the intact half-molecule. Analyses by ion- exchange chromatography revealed that the large fragment reassociates with the small fragment. In order for reassociation to occur, iron must be bound to the large fragment; upon reassociation, the large fragment regained its stable iron binding capacity as well as a visible absorption spectrum almost indistinguishable from those of the intact half-molecule. These data are consistent with a two-step sequential pathway for reversible iron binding in the N-terminal lobe of ovotransferrin that includes an initial iron binding intermediate having a perturbed metal environment and its transformation into the stable iron-bound holoform by peptide-peptide interactions between the large coordinating and small noncoordinating segments.
AB - The mechanism for reversible iron binding in the N-terminal lobe of ovotransferrin was investigated by a protein fragmentation approach. The iron-saturated N-terminal half-molecule of ovotransferrin was proteolyzed into large 30-kDa (1-279) and small 6-kDa (280-332) fragments by a single cleavage with Achromobacter protease I, producing a stable nicked form. For the separation of the two fragments, denaturing conditions were required. The isolated large fragment contained all four iron-coordinating ligands and the anion-binding ligand, and according to spectroscopic titration analysis, it showed iron binding capacity. The iron-bound large fragment, however, showed a blue-shifted visible absorption spectrum and a much decreased iron stability compared with those of the intact half-molecule. Analyses by ion- exchange chromatography revealed that the large fragment reassociates with the small fragment. In order for reassociation to occur, iron must be bound to the large fragment; upon reassociation, the large fragment regained its stable iron binding capacity as well as a visible absorption spectrum almost indistinguishable from those of the intact half-molecule. These data are consistent with a two-step sequential pathway for reversible iron binding in the N-terminal lobe of ovotransferrin that includes an initial iron binding intermediate having a perturbed metal environment and its transformation into the stable iron-bound holoform by peptide-peptide interactions between the large coordinating and small noncoordinating segments.
UR - http://www.scopus.com/inward/record.url?scp=0028224751&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028224751&partnerID=8YFLogxK
M3 - Article
C2 - 8120023
AN - SCOPUS:0028224751
VL - 269
SP - 6671
EP - 6676
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 9
ER -