Crucial importance of the water-entropy effect in predicting hot spots in protein-protein complexes

Hiraku Oshima, Satoshi Yasuda, Takashi Yoshidome, Mitsunori Ikeguchi, Masahiro Kinoshita

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


"Hot spots" are residues accounting for the majority of the protein-protein binding free energy (BFE) despite that they comprise only a small fraction of the protein-protein interface. A hot spot can be found experimentally by measuring the BFE change upon mutating it to alanine: the mutation gives rise to a significantly large increase in the BFE. Theoretical prediction of hot spots is an enthusiastic subject in biophysics, biochemistry, and bioinformatics. For the development of a reliable prediction method, it is essential to understand the physical origin of hot spots. To this end, we calculate the water-entropy gains upon binding both for a wild-type complex and for its mutant complex using a hybrid method of the angle-dependent integral equation theory applied to a molecular model for water and the morphometric approach. We note that this type of calculation has never been employed in the previously reported methods. The BFE change due to alanine mutation is evaluated only from the change in the water-entropy gain with no parameters fitted to the experimental data. It is shown that the overall performance of predicting hot spots in our method is higher than that in Robetta, a standard free-energy-based method using fitting parameters, when the most widely used criterion for defining an actual hot spot is adopted. This result strongly suggests that the water-entropy effect we calculate is the key factor governing basic physics of hot spots.

Original languageEnglish
Pages (from-to)16236-16246
Number of pages11
JournalPhysical Chemistry Chemical Physics
Issue number36
Publication statusPublished - 2011 Sep 28
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Crucial importance of the water-entropy effect in predicting hot spots in protein-protein complexes'. Together they form a unique fingerprint.

Cite this