TY - JOUR
T1 - Conversion of silica nanoparticles into Si nanocrystals through electrochemical reduction
AU - Nishihara, Hirotomo
AU - Suzuki, Takashi
AU - Itoi, Hiroyuki
AU - An, Bai Gang
AU - Iwamura, Shinichiroh
AU - Berenguer, Raúl
AU - Kyotani, Takashi
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014/9/21
Y1 - 2014/9/21
N2 - The precise design of Si-based materials at the nanometer scale is a quite complex issue but of utmost importance for their present and potential applications. This paper reports the first attempt to address the electrochemical reduction of SiO2 at the nanometer scale. SiO 2 nanoparticles are first covered with a uniform carbon layer with controlled thickness at an accuracy of a few nanometers, by pressure-pulsed chemical vapor deposition. With appropriate thickness, the carbon layer plays significant roles as a current path and also as a physical barrier against Si-crystal growth, and the SiO2 nanoparticles are successfully converted into extremely small Si nanocrystals (<20 nm) inside the shell-like carbon layer whose morphology is derived from the original SiO2 nanoparticles. Thus, the proposed electroreduction method offers a new synthesis strategy of Si-C nanocomposites utilizing the morphology of SiO2 nanomaterials, which are well known for a wide variety of defined and regular nanostructures. Owing to the volume difference of SiO2 and the corresponding Si, nanopores are generated around the Si nanocrystals. It has been demonstrated that the nanopores around the Si nanocrystals are effective to improve cycle performance of Si as a negative electrode for lithium-ion batteries. The present method is in principle applicable to various SiO 2 nanomaterials, and thus, offers production of a variety of Si-C composites whose carbon nanostructures can be defined by their parent SiO 2 nanomaterials.
AB - The precise design of Si-based materials at the nanometer scale is a quite complex issue but of utmost importance for their present and potential applications. This paper reports the first attempt to address the electrochemical reduction of SiO2 at the nanometer scale. SiO 2 nanoparticles are first covered with a uniform carbon layer with controlled thickness at an accuracy of a few nanometers, by pressure-pulsed chemical vapor deposition. With appropriate thickness, the carbon layer plays significant roles as a current path and also as a physical barrier against Si-crystal growth, and the SiO2 nanoparticles are successfully converted into extremely small Si nanocrystals (<20 nm) inside the shell-like carbon layer whose morphology is derived from the original SiO2 nanoparticles. Thus, the proposed electroreduction method offers a new synthesis strategy of Si-C nanocomposites utilizing the morphology of SiO2 nanomaterials, which are well known for a wide variety of defined and regular nanostructures. Owing to the volume difference of SiO2 and the corresponding Si, nanopores are generated around the Si nanocrystals. It has been demonstrated that the nanopores around the Si nanocrystals are effective to improve cycle performance of Si as a negative electrode for lithium-ion batteries. The present method is in principle applicable to various SiO 2 nanomaterials, and thus, offers production of a variety of Si-C composites whose carbon nanostructures can be defined by their parent SiO 2 nanomaterials.
UR - http://www.scopus.com/inward/record.url?scp=84906537027&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906537027&partnerID=8YFLogxK
U2 - 10.1039/c4nr01687d
DO - 10.1039/c4nr01687d
M3 - Article
AN - SCOPUS:84906537027
VL - 6
SP - 10574
EP - 10583
JO - Nanoscale
JF - Nanoscale
SN - 2040-3364
IS - 18
ER -