Control of crystalline microstructures in metal gate electrodes for nano CMOS devices

K. Ohmori, T. Chikyow, T. Hosoi, H. Watanabe, K. Nakajima, T. Adachi, A. Ishikawa, Y. Sugita, Y. Nara, Y. Ohji, K. Shiraishi, K. Yamabe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a novel approach to control the effective work function by taking advantage of crystal structures in metal gate electrodes. The crystal structures determine the predominant material elements at the metal/high-k interface. We have found that, in a Ru-Mo alloy system, a randomly-oriented Ru (fcc) structure promotes the segregation of Mo at the interface, enabling us to achieve a wide controllability of flatband voltage by the amount of 0.6-0.8 eV. In addition, the segregation of Mo within a Ru-rich electrode is a key to reducing Fermi level pinning at the metal/HfSiON interfaces.

Original languageEnglish
Title of host publicationECS Transactions - Dielectrics for Nanosystems 3
Subtitle of host publicationMaterials Science, Processing, Reliability, and Manufacturing
Pages201-207
Number of pages7
Edition2
DOIs
Publication statusPublished - 2008 Nov 17
Externally publishedYes
Event3rd International Symposium on Dielectrics for Nanosystems: Materials Science, Processing, Reliability and Manufacturing - 213th ECS Meeting - Phoenix, AZ, United States
Duration: 2008 May 182008 May 22

Publication series

NameECS Transactions
Number2
Volume13
ISSN (Print)1938-5862
ISSN (Electronic)1938-6737

Other

Other3rd International Symposium on Dielectrics for Nanosystems: Materials Science, Processing, Reliability and Manufacturing - 213th ECS Meeting
CountryUnited States
CityPhoenix, AZ
Period08/5/1808/5/22

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Control of crystalline microstructures in metal gate electrodes for nano CMOS devices'. Together they form a unique fingerprint.

Cite this