Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups

T. Konno, J. Watanabe, K. Ishihara

Research output: Contribution to journalArticlepeer-review

105 Citations (Scopus)

Abstract

We investigated the bioconjugation of enzymes on polymer nanoparticles covered with bioinert phosphorylcholine groups. A water-soluble amphiphilic phospholipid polymer (PMBN) was specially designed for preparation of nanoparticles and conjugation with enzymes on them. The PMBN was prepared by random copolymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate, and p-nitrophenylester bearing methacrylate. The PMBN was used as an emulsifier and a surface modifier to prepare the poly(L-lactic acid) nanoparticles by a solvent evaporation technique in aqueous medium. The nanoparticles covered with phosphorylcholine groups were stably dispersed in an aqueous solution and a phosphate buffered saline. The diameter and surface ζ-potential of the nanoparticles were ca. 200 nm and -6 mV, respectively. The p-nitrophenyl ester groups, which are active ester units for the amino groups of the protein, were located at the surface of the nanoparticles. Both acetylcholine esterase and choline oxidase were co-immobilized (dual-mode conjugation) by the reaction between the p-nitrophenyl ester group and the amino group of these enzymes. The enzymatic reactions on the nanoparticles were followed using a microdialysis biosensor system with a microtype hydrogen peroxide electrode in the probe. The nanoparticles conjugated with these enzymes could detect the acetylcholine chloride as hydrogen peroxide, which is a product of the enzymatic reactions on the surface of the nanoparticles in the probe. Namely, continuous enzyme reactions could be occurring on the surface of the nanoparticles. It is concluded that the nanoparticles are a promising tool for a highly sensitive and microdiagnostic system.

Original languageEnglish
Pages (from-to)342-347
Number of pages6
JournalBiomacromolecules
Volume5
Issue number2
DOIs
Publication statusPublished - 2004 Mar 1
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups'. Together they form a unique fingerprint.

Cite this