Abstract
We determine the group of conformal automorphisms of the self-dual metrics on n#CP2 due to LeBrun for n≥3, and Poon for n=2. These metrics arise from an ansatz involving a circle bundle over hyperbolic three-space H3 minus a finite number of points, called monopole points. We show that for n≥3, any conformal automorphism is a lift of an isometry of H3 which preserves the set of monopole points. Furthermore, we prove that for n=2, such lifts form a subgroup of index 2 in the full automorphism group, which we show to be a semi-direct product (U(1)×U(1))×D4, where D4 is the dihedral group of order 8.
Original language | English |
---|---|
Pages (from-to) | 197-249 |
Number of pages | 53 |
Journal | Osaka Journal of Mathematics |
Volume | 50 |
Issue number | 1 |
Publication status | Published - 2013 Mar 1 |
ASJC Scopus subject areas
- Mathematics(all)