Computation of hypersonic flow over a reentry capsule with roughness induced transition

Tomoaki Ishihara, Yousuke Ogino, Naofumi Ohnishi, Keisuke Sawada, Hideyuki Tanno

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The heat flux on the heat-shield and backshell of the Apollo capsule like test models with the roughness in the higher enthalpy conditions were computed using RANS and our developed high order code. Aeroheating measurements with the roughness induced transition on the heat-shield of an Apollo capsule model and on the backshell of a HTV-R test model which was a manned space capsule were performed in the higher enthalpy conditions by the free-piston shock HIEST in JAXA. Measured data set indicate that heat flux on the heat-shield of the Apollo capsule model was 1.5-2 times larger than the heat flux in laminar flow. On the other hand, the heat flux on the backshell of HTV-R became 2-4 times larger. In order to estimate accurate heat flux such turbulent flow, a high order CFD code in hypersonic flow was developed. On the heat-shield, RANS overestimated the measured data on the leeward surface especially in the high enthalpy conditions. This trend is not bad for the safe design of the TPS. On the other hand, RANS underestimates the peak heating of measured data on the backshell. The peak heat flux calculated by the high order code and fine mesh could obtain significant agreement with the measured peak heat flux.

Original languageEnglish
Title of host publication54th AIAA Aerospace Sciences Meeting
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624103933
Publication statusPublished - 2016
Event54th AIAA Aerospace Sciences Meeting, 2016 - San Diego, United States
Duration: 2016 Jan 42016 Jan 8

Publication series

Name54th AIAA Aerospace Sciences Meeting

Other

Other54th AIAA Aerospace Sciences Meeting, 2016
CountryUnited States
CitySan Diego
Period16/1/416/1/8

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Computation of hypersonic flow over a reentry capsule with roughness induced transition'. Together they form a unique fingerprint.

Cite this