Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis

Ayumi Nishiyama, Tetsuya Niihori, Hitoshi Warita, Rumiko Izumi, Tetsuya Akiyama, Masaaki Kato, Naoki Suzuki, Yoko Aoki, Masashi Aoki

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by loss of motor neurons. We have recently identified SOD1 and FUS mutations as the most common causes in a consecutive series of 111 familial ALS pedigrees in Japan. To reveal possible genetic causes for the remaining 51 patients with familial ALS (45 pedigrees), we performed targeted next-generation sequencing of 35 known ALS/motor neuron diseases-related genes. Known variants in ANG, OPTN, SETX, and TARDBP were identified in 6 patients. A novel likely pathogenic homozygous variant in ALS2 was identified in 1 patient. In addition, 18 patients harbored 1–3 novel variants of uncertain significance, whereas hexanucleotide repeat expansions in C9ORF72 were not detected using repeat-primed polymerase chain reaction. Collectively, in our Japanese cohort, the frequencies of SOD1, FUS, SETX, TARDBP, ANG, and OPTN variants were 32%, 11%, 2%, 2%, 1%, and 1%, respectively. These findings indicate considerable differences in the genetic variations associated with familial ALS across populations. Further genetic analyses and functional studies of novel variants are warranted.

Original languageEnglish
Pages (from-to)194.e1-194.e8
JournalNeurobiology of Aging
Volume53
DOIs
Publication statusPublished - 2017 May 1

Keywords

  • Familial amyotrophic lateral sclerosis
  • Genetic analysis
  • Japanese
  • Next-generation sequencer

ASJC Scopus subject areas

  • Neuroscience(all)
  • Ageing
  • Clinical Neurology
  • Developmental Biology
  • Geriatrics and Gerontology

Fingerprint Dive into the research topics of 'Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

  • Cite this