Comprehensive die shear test of silicon packages bonded by thermocompression of al layers with thin sn capping or insertions

Shiro Satoh, Hideyuki Fukushi, Masayoshi Esashi, Shuji Tanaka

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Thermocompression bonding for wafer-level hermetic packaging was demonstrated at the lowest temperature of 370 to 390 °C ever reported using Al films with thin Sn capping or insertions as bonding layer. For shrinking the chip size of MEMS (micro electro mechanical systems), a smaller size of wafer-level packaging and MEMS-ASIC (application specific integrated circuit) integration are of great importance. Metal-based bonding under the temperature of CMOS (complementary metal-oxide-semiconductor) backend process is a key technology, and Al is one of the best candidates for bonding metal in terms of CMOS compatibility. In this study, after the thermocompression bonding of two substrates, the shear fracture strength of dies was measured by a bonding tester, and the shear-fractured surfaces were observed by SEM (scanning electron microscope), EDX (energy dispersive X-ray spectrometry), and a surface profiler to clarify where the shear fracture took place. We confirmed two kinds of fracture mode. One mode is Si bulk fracture mode, where the die shear strength is 41.6 to 209 MPa, proportionally depending on the area of Si fracture. The other mode is bonding interface fracture mode, where the die shear strength is 32.8 to 97.4 MPa. Regardless of the fracture modes, the minimum die shear strength is practical for wafer-level MEMS packaging.

Original languageEnglish
Article number174
JournalMicromachines
Volume9
Issue number4
DOIs
Publication statusPublished - 2018 Apr 11

Keywords

  • Al-Al bonding
  • Fracture mechanism
  • Low temperature bonding
  • Shear fracture strength
  • Sn
  • Thermocompression bonding
  • Vacuum seal

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Comprehensive die shear test of silicon packages bonded by thermocompression of al layers with thin sn capping or insertions'. Together they form a unique fingerprint.

Cite this