Comprehensive data reduction for N 2 O/HDPE hybrid rocket motor performance evaluation

Landon Kamps, Kazuhito Sakurai, Yuji Saito, Harunori Nagata

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Static firing tests of a hybrid rocket motor using liquid nitrous oxide (N 2 O) as the oxidizer and high-density polyethylene (HPDE) as the fuel are analyzed using a novel approach to data reduction that allows histories for fuel mass consumption, nozzle throat erosion, characteristic exhaust velocity (c*) efficiency, and nozzle throat wall temperature to be determined experimentally. This is done by firing a motor under the same conditions six times, varying only the burn time. Results show that fuel mass consumption was nearly perfectly repeatable, whereas the magnitude and timing of nozzle throat erosion was not. Correlations of the fuel regression rate result in oxidizer port mass flux exponents of 0.62 and 0.76. There is a transient time in the c* efficiency histories of around 2.5 s, after which c* efficiency remains relatively constant, even in the case of excessive nozzle throat erosion. Although nozzle erosion was not repeatable, the erosion onset factors were similar between tests, and greater than values in previous research in which oxygen was used as the oxidizer. Lastly, nozzle erosion rates exceed 0.15 mm/s for chamber pressures of 4 to 5 MPa.

Original languageEnglish
Article number45
JournalAerospace
Volume6
Issue number4
DOIs
Publication statusPublished - 2019 Apr 1

Keywords

  • Ballistic reconstruction technique
  • C* efficiency
  • Fuel regression
  • Nozzle erosion

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Comprehensive data reduction for N <sub>2</sub> O/HDPE hybrid rocket motor performance evaluation'. Together they form a unique fingerprint.

Cite this