Comparison of the electric properties and ESCA result of oxide films formed on AISI 316L steel in simulated BWR conditions during SSRT

Y. Takeda, M. Bojinov, H. Hänninen, P. Kinnunen, T. Laitinen, K. Mäkelä, T. Saario, K. Sakaguchi, T. Shoji, P. Sirkiä, A. Toivonen

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)

Abstract

A possible approach to describe the role of the environment in the phenomena behind crack initiation and crack propagation in stress corrosion cracking (SCC) is to assume that the transport of species through the oxide film on the material surface is one of the rate-controlling factors. The transport rates of ionic and electronic defects through the oxide film are, in addition to the environment, also affected by the stress and strain applied to the bulk material. In this paper, the surface oxide film formed on AISI 316L steel in slow strain rate tests (SSRT) in simulated BWR condition has been analyzed by using Electron Spectroscopy for Chemical Analysis (ESCA). The obtained film composition and structure have been combined with in-situ contact electric resistance (CER) measurements in order to evaluate the changes in oxide film electric properties during straining in the above environment. The results show that oxide film resistance of the strained part exhibits a maximum at around 2% of strain, which seems to correlate with a maximum in the Cr(III) concentration in the inner layer of the oxide. The implications of these results to SCC are discussed based on Mixed-Conduction Model (MCM).

Original languageEnglish
Pages (from-to)925-930
Number of pages6
JournalKey Engineering Materials
Volume261-263
Issue numberII
Publication statusPublished - 2004 Jan 1
EventAdvances in Fracture and Failure Prevention: Proceedings of the Fifth International Conference on Fracture and Strength of Solids (FEOFS2003): Second International Conference on Physics and Chemistry of Fracture and Failure Prevention (2nd ICPCF) - Sendai, Japan
Duration: 2003 Oct 202003 Oct 22

Keywords

  • BWR
  • ESCA
  • Oxide Film
  • SSRT-CER Technique
  • Slow Strain Rate Testing (SSRT)

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Comparison of the electric properties and ESCA result of oxide films formed on AISI 316L steel in simulated BWR conditions during SSRT'. Together they form a unique fingerprint.

Cite this