Combined UV-irradiation and pyrolysis-GC/MS approach for evaluating the deterioration behavior of ethylene vinyl acetate

Kanako Yamada, Shogo Kumagai, Toshikazu Shiratori, Tomohito Kameda, Yuko Saito, Atsushi Watanabe, Chuichi Watanabe, Norio Teramae, Toshiaki Yoshioka

Research output: Contribution to journalArticlepeer-review

Abstract

Ethylene vinyl acetate (EVA), commonly used to encapsulate photovoltaic (PV) modules, deteriorates on prolonged exposure to sunlight. In this work, fresh and deteriorated EVA samples prepared by UV irradiation (500 W m−2) over different periods (0–168 h) are characterized by conventional elemental analysis, microscopic observations, Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetry. To the best of our knowledge, this is the first work to employ pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and micro-UV irradiation combined Py-GC/MS (UV/Py-GC/MS) to investigate the deterioration behavior of EVA, using in-situ identification of gases liberated during UV irradiation, such as H2O, CO2, ketones, acetic acid, and lactones. In addition, the deterioration of the thermal stability on aging is confirmed using evolved gas analysis-mass spectrometry (EGA-MS). UV/Py-GC/MS revealed that acetaldehyde, acetone, acetic acid, γ-butyrolactone, succinic anhydride, and cyclobutanone are produced during UV irradiation. In addition, Py-GC/MS identified cyclopentanone, citraconic anhydride, γ-valerolactone, and cyclobutanone from the UV deteriorated EVA samples, which suggested the presence of ketone and lactone structures in the deteriorated EVA. This work establishes the combined usage of UV irradiation and Py-GC/MS as a promising method to investigate UV deterioration behavior in greater detail. These findings may contribute to a superior understanding of the breakdown of PV modules by the deterioration of EVA, and lead to the development of UV-resistant encapsulating materials.

Original languageEnglish
Article number109623
JournalPolymer Degradation and Stability
Volume190
DOIs
Publication statusPublished - 2021 Aug

Keywords

  • Ethylene vinyl acetate
  • PV module
  • Py-GC/MS
  • UV aging
  • UV/Py-GC/MS

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Combined UV-irradiation and pyrolysis-GC/MS approach for evaluating the deterioration behavior of ethylene vinyl acetate'. Together they form a unique fingerprint.

Cite this