Collective bulk carrier delocalization driven by electrostatic surface charge accumulation

Masaki Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, Y. Tokura

Research output: Contribution to journalArticle

477 Citations (Scopus)

Abstract

In the classic transistor, the number of electric charge carriers-and thus the electrical conductivity-is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research. As the number of charges essentially determines the electronic phase of a condensed-matter system, transistor operation enables reversible and isothermal changes in the system's state, as successfully demonstrated in electric-field-induced ferromagnetism and superconductivity. However, this effect of the electric field is limited to a channel thickness of nanometres or less, owing to the presence of Thomas-Fermi screening. Here we show that this conventional picture does not apply to a class of materials characterized by inherent collective interactions between electrons and the crystal lattice. We prepared metal-insulator-semiconductor field-effect transistors based on vanadium dioxide-a strongly correlated material with a thermally driven, first-order metal-insulator transition well above room temperature-and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state. This non-local switching of the electronic state is achieved by applying a voltage of only about one volt. In a voltage-sweep measurement, the first-order nature of the metal-insulator transition provides a non-volatile memory effect, which is operable at room temperature. Our results demonstrate a conceptually new field-effect device, extending the concept of electric-field control to macroscopic phase control.

Original languageEnglish
Pages (from-to)459-462
Number of pages4
JournalNature
Volume487
Issue number7408
DOIs
Publication statusPublished - 2012 Jul 26
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Collective bulk carrier delocalization driven by electrostatic surface charge accumulation'. Together they form a unique fingerprint.

  • Cite this

    Nakano, M., Shibuya, K., Okuyama, D., Hatano, T., Ono, S., Kawasaki, M., Iwasa, Y., & Tokura, Y. (2012). Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature, 487(7408), 459-462. https://doi.org/10.1038/nature11296