Coexistence of BCS- and BEC-like pair structures in Halo Nuclei

K. Hagino, H. Sagawa, J. Carbonell, P. Schuck

Research output: Contribution to journalArticlepeer-review

98 Citations (Scopus)

Abstract

We investigate the spatial structure of the two-neutron wave function in the Borromean nucleus Li11, using a three-body model of Li9+n+n, which includes many-body correlations stemming from the Pauli principle. The behavior of the neutron pair at different densities is simulated by calculating the two-neutron wave function at several distances between the core nucleus Li9 and the center of mass of the two neutrons. With this representation, a strong concentration of the neutron pair on the nuclear surface is for the first time quantitatively established for neutron-rich nuclei. That is, the neutron pair wave function in Li11 has an oscillatory behavior at normal density, while it becomes a well-localized single peak in the dilute density region around the nuclear surface. We point out that these features qualitatively correspond to the BCS- and BEC-like structures of the pair wave function found in infinite nuclear matter.

Original languageEnglish
Article number022506
JournalPhysical review letters
Volume99
Issue number2
DOIs
Publication statusPublished - 2007 Jul 13

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Coexistence of BCS- and BEC-like pair structures in Halo Nuclei'. Together they form a unique fingerprint.

Cite this