Cloning a neutral protease of Clostridium histolyticum, determining its substrate specificity, and designing a specific substrate

Hiroshi Maeda, Kanako Nakagawa, Kazutaka Murayama, Masafumi Goto, Kimiko Watanabe, Michio Takeuchi, Youhei Yamagata

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Islet transplantation is a prospective treatment for restoring normoglycemia in patients with type 1 diabetes. Islet isolation from pancreases by decomposition with proteolytic enzymes is necessary for transplantation. Two collagenases, collagenase class I (ColG) and collagenase class II (ColH), from Clostridium histolyticum have been used for islet isolation. Neutral proteases have been added to the collagenases for human islet isolation. A neutral protease from C. histolyticum (NP) and thermolysin from Bacillus thermoproteolyicus has been used for the purpose. Thermolysin is an extensively studied enzyme, but NP is not well known. We therefore cloned the gene encoding NP and constructed a Bacillus subtilis overexpression strain. The expressed enzyme was purified, and its substrate specificity was examined. We observed that the substrate specificity of NP was higher than that of thermolysin, and that the protein digestion activities of NP, as determined by colorimetric methods, were lower than those of thermolysin. It seems that decomposition using NP does not negatively affect islets during islet preparation from pancreases. Furthermore, we designed a novel substrate that allows the measurement of NP activity specifically in the enzyme mixture for islet preparation and the culture broth of C. histolyticum. The activity of NP can also be monitored during islet isolation. We hope the purified enzyme and this specific substrate contribute to the optimization of islet isolation from pancreases and that it leads to the success of islet transplantation and the improvement of the quality of life (QOL) for diabetic patients.

Original languageEnglish
Pages (from-to)10489-10499
Number of pages11
JournalApplied Microbiology and Biotechnology
Volume99
Issue number24
DOIs
Publication statusPublished - 2015 Dec 1

Keywords

  • Clostridium histolyticum
  • Islet separation
  • Neutral protease
  • Purification
  • Substrate specificity

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Cloning a neutral protease of Clostridium histolyticum, determining its substrate specificity, and designing a specific substrate'. Together they form a unique fingerprint.

Cite this