Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element

Akira Takeuchi, Akihisa Inoue

Research output: Contribution to journalArticlepeer-review

2006 Citations (Scopus)

Abstract

Bulk metallic glasses (BMGs) have been classified according to the atomic size difference, heat of mixing (ΔHmix) and period of the constituent elements in the periodic table. The BMGs discovered to date are classified into seven groups on the basis of a previous result by Inoue. The seven groups are as follows: (G-I) ETM/Ln-LTM/BM-Al/Ga, (G-II) ETM/Ln-LTM/BM-Metalloid, (G-III) Al/Ga-LTM/BM-Metalloid, (G-IV) IIA-ETM/Ln-LTM/BM, (G-V) LTM/BM-Metalloid, (G-VI) ETM/Ln-LTM/BM and (G-VII) IIA-LTM/BM, where ETM, Ln, LTM, BM and IIA refer to early transition, lanthanide, late transition, group IIIB-IVB and group IIA-group metals, respectively. The main alloying element of ternary G-I, G-V and G-VII, ternary G-II and G-IV, and ternary G-VI BMGs is the largest, intermediate and smallest atomic radius compared to the other alloying elements, respectively. The main alloying element of ternary BMGs belonging to G-I, G-V, G-VI and G-VII is an element in the atomic pair with the largest and negative value of ΔH mix (ΔHL.N.mix), while the main element of ternary BMGs belonging to G-II and G-IV is independent of the atomic pair with ΔHL.N.mix. The characteristics of the main element derived for the ternary BMGs are directly applicable to multicomponent BMGs belonging to G-I, G-II, G-IV (Mg-based BMGs), G-V and G-VII. The main element can be the larger-sized element in the atomic pair with ΔH L.N.mix or in the same group as the other elements for multicomponent BMGs belonging to G-III, G-IV (Be-containing Zr-based BMG) and G-VI. The main element of BMGs belonging to G-VI tends to change from the element with the smallest atomic radius in a ternary system to an element with a relatively large atomic size in a multicomponent system. The change is due to an increase in glass-forming ability through multicomponent alloying of BMGs belonging to G-VI. The results of the classification of BMGs obtained in the present study are important for further development of BMGs, with the results providing a road map for the development of new BMG compositions.

Original languageEnglish
Pages (from-to)2817-2829
Number of pages13
JournalMaterials Transactions
Volume46
Issue number12
DOIs
Publication statusPublished - 2005 Dec

Keywords

  • Atomic configuration
  • Atomic radius
  • Bulk metallic glass
  • Glass-forming ability
  • Interchangeability
  • Main element
  • Mixing enthalpy
  • Multicomponent system
  • Periodic table
  • Ternary system

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element'. Together they form a unique fingerprint.

Cite this