Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β

Takahiro Suga, Hiroaki Yamaguchi, Jiro Ogura, Nariyasu Mano

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Bile acids are biosynthesized from cholesterol in hepatocytes and usually localize in the enterohepatic circulation system. This system is regulated by several transporters that are expressed in the liver and intestine. Organic solute transporter (OST) α/β, which is known as a bidirectional transporter for some organic anions, contributes to the transport of bile acids; however, the transport properties of individual bile acids are not well understood. In this study, we investigated the transport properties of five bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA], ursodeoxycholic acid [UDCA], and lithocholic acid [LCA]) together with their glycine and taurine conjugates mediated by OSTα/β. Of the unconjugated bile acids, CA, CDCA, DCA, and LCA were taken up by OSTαβ/MDCKII cells more rapidly than mock cells, but no significant increase in the uptake of UDCA was observed. On the contrary, all glycine- and taurine-conjugated bile acids showed a significant increase in the uptake by OSTαβ/MDCKII cells. Saturable OSTα/β-mediated transports of CDCA, DCA, glycochenodeoxycholic acid (GCDCA), glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), taurochenodeoxycholic acid (TCDCA), and taurolithocholic acid (TLCA) were observed. The apparent Michaelis constants of CDCA, DCA, GCDCA, GDCA, GLCA, TCDCA, and TLCA for OSTα/β were 23.0 ± 4.0, 14.9 ± 1.9, 864.2 ± 80.7, 586.4 ± 43.2, 12.8 ± 0.5, 723.7 ± 4.8, and 23.9 ± 0.3 μM, respectively. However, the transport of other bile acids was not saturable. Our results indicate that OSTα/β has a low affinity but a high capacity for transporting bile acids.

Original languageEnglish
Pages (from-to)1023-1029
Number of pages7
JournalBiochimica et Biophysica Acta - Biomembranes
Volume1861
Issue number5
DOIs
Publication statusPublished - 2019 May 1

Keywords

  • Bile acid
  • Kinetic analysis
  • Organic solute transporter

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of 'Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β'. Together they form a unique fingerprint.

Cite this